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Abstract

The stability of the equilibria of time-invariant nonlinear dynamical systems with
discrete time scale is investigated. We present an elementary proof showing that in the
case of a stable equilibrium and continuously differentiable state transition function, all
eigenvalues of the Jacobian computed at the equilibrium must be inside or on the unit
circle. We also demonstrate via numerical examples that if some eigenvalues are on the
unit circle and all other eigenvalues are inside the unit circle, then the equilibrium maybe
unstable, or marginally stable, or even asymptotically stable, which show that the
necessary condition cannot be further restricted in general. In addition, the necessary
condition is given in terms of spectral radius and matrix norms. © 1999 Elsevier Sci-
ence Inc. All rights reserved.

1. Introduction

Stationary dynamical systems with discrete time scale can be written as

X1 = T(xy), (1)
where x; is the state of the system at time period &, and T is the state-transition
function. Let X C R” and #(T) C X. For any initial state x, € X, Eq. (1)
uniquely determines the state trajectory, x;, k = 0.
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A state X € X is called an equilibrium of system (1), if
x = T(X), (2)

that is, the equilibria of system (1) and the fixed points of mapping T are
equivalent to each other.

An equilibrium X is called stable or marginally stable if for arbitrary € > 0,
there is a & > 0 such that ||xo — X|| < 0 implies that for all £ > 0, ||x, — X|| < e.
An equilibrium is asymptotically stable if it is marginally stable and there exists
a 4 > 0 such that ||xo — X|| < 4 implies that x, — X as k — oc. An equilibrium
is globally asymptotically stable if it is marginally stable and x;, — X as k — o
with arbitrary initial state xy € X.

There are many sufficient conditions for the marginal, asymptotical, or
global asymptotical stability of an equilibrium. Criteria based on Lyapunov
functions are discussed in almost all textbooks on dynamical systems theory
(see, for example, [1]). Recently, Li et al. [2] have developed necessary stability
conditions based on Lyapunov functions.

In this paper we will focus on criteria based on the spectral properties of
the Jacobian of the state transition function. It is well known that if X is an
interior point and T is continuously differentiable in the neighbourhood of x
and all eigenvalues of J(X) (which is the Jacobian at the equilibrium) are
inside the unit circle, then X is asymptotically stable. Necessary stability
conditions have been obtained by using stable-unstable manifold theory [3],
and some of the conditions can be stated in an elementary way. However, no
elementary proofs of these results are offered in the literature. In this paper we
present an elementary proof showing that if X is marginally stable, then all
eigenvalues of J(x) must be on or inside the unit circle. Since asymptotical
stability implies marginal stability, this necessary condition applies also to
asymptotically stable equilibrium as well. Via numerical examples we will also
demonstrate that in the case when some eigenvalues have unit absolute values
and all other eigenvalues are inside the unit circle, then X can be either un-
stable, or marginally stable, or even asymptotically stable showing that the
necessary condition cannot be further restricted. In the last section of the
paper the necessary condition will be derived in terms of spectral radius and
matrix norms.

2. A necessary condition for stability

Before formulating the main theorem of this paper, some preliminary results
are presented.
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Lemma 2.1 (A canonical form of a real matrix). For [ = 1,2,..., denote
0 1 1 1
0 1 1 1
N, = ; M, = ;
0 1 1 1
0/ 1 1/
and

(cos ,)M;  (sin 6,)M,
L, =
—(sin 6,)M; (cos 6,)M,

For every real square matrix A, there is a nonsingular real matrix P such that

2121

A =PAP"'
= dlag(Nel PR 7Ne,v7 }~r+1Me,v+1 PR )Vr-%—.vMe,A,n |Tr+.r+1 ‘LZe,A,‘Al ) |Tr+s+t|L2(',~+,\+L)7

where N,, (1<i<r) are the blocks corresponding to the zero eigenvalue, ;,M,,
(r+1<i<r—+s) are the blocks corresponding to the real eigenvalues 7;, |t;|Ly,
(r+s+ 1<i<r+s+1)are the blocks corresponding to the nonreal eigenvalues
T;.

Proof. The following proof is based on Ref. [4].

Any matrix is similar to its Jordan form. If there are zero eigenvalues, then
the Jordan blocks corresponding to them are N,,,...,N,,. Any Jordan block
corresponding to any nonzero eigenvalue / can be transformed as

1 o
A A1
M2 21
2l—-1 ;L
1
A
X :)LM]
;L[—Z
)L171

Therefore all Jordan blocks corresponding to real nonzero eigenvalues are
similar to 4, M, R/N\Y |

17" Cris*
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The characteristic polynomial of any real matrix A is a real polynomial, so
are its invariant factors. Then any nonreal elementary factor and its conjugate
factor must appear in pairs. The above discussion implies that all Jordan
blocks of A corresponding to nonreal eigenvalues must be similar to matrix

diag(fr+s+lM2e,.ﬂ+1 ) fr+s+11\/[2e,ﬂ+1 3y Tr+s+tM2c)yH+n frJrertl\/[2e,.,j+l ) .

Notice that with the notation 7, = |t;|(cos 6, +1 sin 6,),

-1
I[ —II] Il _lll
o (mlLa) .
I] II] I[ III
(cos 0,)M;  (sin 0))

. M, o\ -l
I[ —1[1 I] —II[
= |t . .
II 1II . I[ II[
—(sin 6,) (cos 6,)M,

. ‘[,']M]
N M, |’

Since A and 1 are real, they are real similar. [

M,

Lemma 2.2. Suppose {x,:k =0,1,2,...} is the trajectory of a discrete dynamic
system obtained by x.1 = T(x;) in X C R". Let P be a nonsingular real matrix.
Then under the linear transformation I1: y = o I(x) = Px, lhe image of the
original dynamical system is a discrete dynamlcal system in y ¥ H( ) obtained
by Yiu =h(y,), where h=TloToIl"'. In particular, if T € C'(X), then
heC'(Y).

Proof. The assertion follows from relation

Vi1 = PXpq1 = PT(x;) = PT(P~ Yk) (IMMoToTIl” )(yk)v

for k=0,1,2,... In particular, if T € C!(X), then using the chain rule of
differentiation, we see that h € C'(Y). O

Lemma 2.3. Stability (or asymptotical stability) of an equilibrium is preserved
under linear transformation. Namely, X is a stable (or asymptotically stable)
equilibrium of a dynamic system X1 = T(x;) in X C R" if and only if under the
lmear transformation I1: y = ol I1(x) = Px where P is a nonsingular real matrix,
y “T'Pg is a stable ( or asymptotically stable) equilibrium of the dynamical system

Yir1 = (IMMoToll )(Yk)~
Proof. Notice that

[ye = ¥Il = [Pxx — Px|| = [[P(xx — X)[| < [|P| [[xx — X[,
and
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Ixi = x|l = [P~"y, = Pyl = [P~ (v, = DI < P Iy — ¥l

from which the assertion follows immediately. [

Lemma 2.4. Let N;, M, and Ly, be defined as in Lemma 2.1. Then for k =
1,2,...,

Matrix with the only nonzero entries 1 on the

Nf = upper (k + 1)th subdiagonal if k<l
O (zero matrix) if k=1,
aQ a G G
G G G
M) = ,
G G
L Cl(c) dIx1
_ =1 o1
C;c)—l —C,l Cl%ﬂ (_1) C1€+}—2
G G (-t
M, * =
Gy —C;
L Cl({)—l = Ixl
where C is the binomial number (’l‘),
(cos k0,)M}  (sin k0,)M;
Lgl = )
—(sin k0,)M;  (cos k0,)M} |, ,,
(cos k0,)M;*  —(sin k0,)M,*
L, =
21
(sin k0,)M;*  (cos k0O)M;* |,, .,

Proof. Easy calculation and finite induction can be applied to show these
relations. For example, in showing the closed form representation for M, *

using induction we need the identity
Cl

0 1 !
Ck—l + Ck +ot Ck+l—l = Ykt

which follows immediately from the repeated application of the additive
property of the binomial numbers, since
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Gt Gt G = (QHC) -+ Gy

= (Cliﬂ + CI%H) +ot C/ﬁ+171 == C/i;}*l + C/ﬁ+171 = C/ﬁ+1' 0
Corollary 2.5. Let ||.||, denote the column-norm of real or complex matrices.
Then for k=1,2,...,

INFIL < U<k MGl <k, IV < 2+ 1= 2),

L1 < (Jeos k0| + [sin k0:) MG, < V2, < V20K~ < 20677,

L5111, < (Jeos k0, + [ sin k6,) M|, < V2|M; ]|,
<V2U(k +1-2)"" < 20(k 421 —2)"".

We are now able to formulate the main result of this paper.

Theorem 2.6. Let X be a convex open set in R". Assume that for mapping
T e C'(X), 2(T) C X, and the discrete dynamical system Xy, = T(x;) has an
equilibrium X € X. Then the necessary condition for the stability of X is that the
absolute values of the eigenvalues of J = (0T /0x)| _., the Jacobian of T at X, are
less than or equal to one.

X=X’

Proof. Since translations do not change the Jacobian of T and preserve the
stability of an equilibrium, we may assume that X contains 0 and X = 0. If
X # 0, then introduce the new state variable X’ = x — X.

Let 41, 22, . .., 4, be the eigenvalues of J. Let « = max{|4,|, |42, ..., ||} and
assume that o > 1. Define
ﬁ—{_oo’ if ] =1kl == |hl =9
max{{|4i], |42, -, |4} \ {a}}, otherwise.

By Lemma 2.1, there exists a nonsingular real matrix P such that
PJP ! = A, where A is of the form as given in Lemma 2.1. Since interchanging
the same rows and columns does not affect the similarity of matrices, we can
write A in the following form obtained by rearranging the orders of the di-
agonal blocks of A:

;1 = QJQ71 = dlag{:ulel ’ /’tZszv s a.uprpv cee 7:“fo}1}7

where Q is real and nonsingular; 1 <p<g; for all i (1<i<gq), B; is an f; x f;
matrix in form of either N, M, or L, (in the last case, f; is even); |y,| = o for
1<i<p, || <P for p+1<i<gq. (For blocks corresponding to zero eigen-
values we can select u; = 1 and B;, = N,.) Obviously, p = g corresponds to the
case when f§ = —oo.

Introduce the notation ]NSf,, = diag{0,...,0,B;,0,...,0} for 1 <i<gq.
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We will next define a norm in R”. For any z € R”, we can uniquely write
z=(z), +(2),+ -+ (Z)qv
where (z); is the component vector of z associated to the block By, in B,

1 <i<gq. Therefore (z), is an f-dimensional vector. Let .||, ; denote the /'-
norm in R/, 1 <j < oco. Define ||.|| as follows:

z]| = ||(Z)1H1,fl + ||(Z)2H1,f2 +ee ||(Z)q||1,fq'

Clearly, ||.|| well defines a norm, and it coincides with the /!-norm in R". Note

that the column-norm of a matrix is compliant to the /'-norm of a vector space.

Let f =max{fi,f>,...,f;}. Recall that for any positive a, b, ¢ such that

a > max{l,b}, we have limy_ . (¢*/b*) = +oc0 and lim;_. (a*/k°) = 0.

Notice that « > max{1, f}. Therefore, there is a positive integer ko, such that
ki

o 0
— 2 >max{4, p K" +2}.
flko+f—2)" { oo
(This is also true when f = —oo with an odd value of 4.)

Let S = T, then the state trajectory of the dynamical system z;,; = S(z;)
with zy = X( in X is a subsequence of the state sequence of the original system
X;+1 = T(X;). By the chain rule of differentiation,

S = T ) = (1 (1) ST () S (M) S ().

Note that X = 0 is a fixed point of T, therefore
oS oT
S0 -5

def

Now we perform the linear transformation IT: X — Y = II(X), by
y & I1(x) = Qx. By Lemmas 2.2 and 2.3, the dynamic system y,., = h(y,) has

a stable equilibrium y = 0, where h=TIoS o IT™" is continuously differentia-
ble. The Jacobian of h at 0 is

@h _ aS -1 _ koy—1 __ ~ ko
oy 0=Q50Q " =Qiq! =1

By the local linearization of h, we have

h(y) = h(0) +2—lyl(0) (v = 0) +o(llyl) = A"y + o([ly])-

Hence there exists a > 0 such that whenever ||y|| < 9,

~k

In(y) — A"y < [lyll 3)
Define

B ={y: [lyll <9},

(0)]k0 _Jh,

and
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Wl + 1O,y
C= > |‘(Y)p+1||11,§,+1 +'..+||(y)q||14fq} if p <gq,
Y ifp=gq.
Note that C can be rewritten as
¥l lh s + -+ 1O,
C=q >3 > 1Ml + -+ I1W)IL,Y ifp<q,
Y if p=gq.
From now on, we only consider the case when p < ¢ since the case of p = ¢
can be treated similarly.

Select any y* € BN C. From inequality (3) and the construction of ||.|| we
have

le(h( ¥y = (¥l <22H Jilli -

So
I(h(y)), — (A1 Y )il <ZZH Jill 1

-

and

Zn ||1f<22|| il

i=p+1

Let f = max{fi, f>,...,f;}. By the triangle inequality and the corollary of
Lemma 2.4 we have

ZH Nilly > ZH (A°y) il = 22” il
:Z”“?'Bm Vil — 2Z|| il
—ak°Z||B"° )il = 2ZH )il
> akoz LTIV T

Bl =

P
>akoz””'lgﬁ Zn il

i1 filko + f;

k

f(k +f— 2 f-1 ‘| Z” ”1/:

and by using the corollary of Lemma 2.4 again we see that
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ZII Nilliy < ZII A"yl +2ZII Jillis

i=p+1 i=p+1
q
.
= > IdB (v Hlf,+22|| Nl
i=p+1
ki
<ﬁ“§:HB“ mf+2§]| )l
i=p+l1
k
<ﬁ’“’ZH 11 (v ||1,,+zZ|| )l
i=p+1
q
i—1
<O fkT Iy mﬂ+2§jn )l
i=p+1
1
<pOsK, Zn \|1¢+2Z|| )l

i=p+1

N 1ZII ||lf+22|| Jilli,

= (B /ky- +2ZII Jilli; -

By the choice of &y, we have

ZII Nilliy; > ZII Dillis »

i=p+1
and furthermore,

Ryl > ZH Nillis >

ko

ko

1

2

o

flko+f—2)""

- 2] Iy {1 > 21yl -

ey ]Zn Wl

43

)

Thus, h(y*) € C, and h(y*) is away from the equilibrium at least twice as much

asy".

Assume that the zero equilibrium is stable. Then there is a positive € < § such
that if ||y,|| < e then for all £k = 0, ||y,|| < J. If one selects a nonzero y, € C
such that ||y,|| <e, then inequality (3) holds for all y, and obviously,

¥, € BN C. However, from relation (4) we conclude that

lyell > 2 Iyl > -+ > 25 [lyoll,

which tends to oo as k£ — oo. This contradicts the selection of e. Hence the

proof is completed. [
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Corollary 2.7. Since asymptotical stability implies marginal stability, Theorem
2.6 holds also for any asymptotically stable equilibrium.

We know that if all eigenvalues of J are inside the unit circle, then the
equilibrium is asymptotically stable. If some eigenvalues are on the unit circle
and all others are inside the unit circle, then the equilibrium may be unstable
and in some cases may be marginally stable, or even asymptotically stable as it
is illustrated in the following examples.

Example 2.8. Consider the linear system
X1 = AXy

with x; = (xkl,xkz)T and

(00

It is easy to see that for k > 0,

1 k
AF =
(o 1)

and therefore

x; = Afxy = (

If xp, > 0, then x;; — oco. Hence the zero equilibrium is unstable.

xo1 + kxor )

X02

Example 2.9. Consider the single dimensional linear system

Xip1 = —Xk
with a unique equilibrium x = 0. Since for k£ > 0, x; = ( —1)kx0, the equilibrium
is stable and the stability is not asymptotical.

Example 2.10. Consider now the single dimensional nonlinear system

X1 = glx)

with
2

glx) =xe™,
which has a unique equilibrium X = 0. The Jacobian of g at X has unique ei-
genvalue 1. Since |x;| is decreasing in k and bounded by zero, a = limy_, |xx]
exists and is finite. Moreover, it satisfies the equation @ = ae~*’, which implies
a=0. By the monotonicity and convergence of |x;| we conclude that the zero
equilibrium is asymptotically stable.
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3. Stability and matrix norms

In this section, we will apply the spectral theory in finite dimensional spaces
to reveal some interesting connections between stability and matrix norms.

Let A be a real or complex n x n matrix. Let the eigenvalues of A be denoted
by A1, 42, ..., 4,. The spectral radius of matrix A is defined as

re(A) = max{|A|, | 42|, -, |4n|}-
It is well known that for all induced matrix norms,
ro(A) <A
(see for example, Ref. [5] or [6].)
There are many special spectral properties of real or complex matrices

known from the literature. The following lemmas are given in Ortega and
Rheinboldt [7].

Lemma 3.1. Let ||.| be an arbitrary norm on R" (or C") and P an arbitrary
nonsingular, n x n, real (or complex) matrix. Then the mapping defined by
x — ||x||" = ||Px||, for all x € R" (or C"), is @ norm on R" (or C"). Moreover, if
A is a real (or complex) n x n matrix, then the induced matrix norm is given as

A" = [PAP".

Proof. It is simple to verify that ||.]|" is a norm. The second part of the lemma
follows from equality
(BN sup I AX||" = sup [[PAX|| = sup [[PAP 'yl = [PAP7Y|. O

lIx]'= [Px||= lyl=1

Lemma 3.2. Let A be the Jordan form of an n x n matrix A. Then for arbitrary
€ >0, A is similar to a matrix A which is identical to A except that each off-
diagonal 1 is replaced by e.

Proof. Without loss of generality we may assume that A is an n x n Jordan
block. Let D be the diagonal matrix diag(l,e,...,e"!), then D™'AD = A.
Hence, A is similar to 4. O

Lemma 3.3. Let A be an n x n matrix. Then for arbitrary € > 0, there is a norm
on C" such that for the induced matrix norm,

Al <75(A) + e
Proof. Let A be the modified Jordan form of A as given in Lemma 3.2. Then

the column-norm of A satisfies relation ||A||, <r,(A) +¢, and using Lemma
3.1, the result follows. O

The main result of this section can be formulated as follows.
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Theorem 3.4. Let A be an n x n real or complex matrix. Then
ro(A) = inf {||A||: ||.|| is any induced matrix norm on C"}.

Furthermore, if all the Jordan blocks of A corresponding to the eigenvalues with
largest absolute value have size 1 x 1, then r,(A) = |A|| with some matrix norm;
otherwise, r,(A) < ||A|| for all matrix norms.

Proof. The first part of the theorem follows immediately from Lemma 3.3.

Suppose that all the Jordan blocks corresponding to the eigenvalues of A
with largest absolute value have size 1 x 1. If A is diagonable, then take the
column-norm of the diagonal Jordan form of A. Then it equals ,(A), and is a
norm of A by Lemma 3.1. If A is not diagonable, then there must be some
other eigenvalues of A with Jordan blocks with sizes more than 1 x 1. Let f be
the maximum of the absolute values of all other eigenvalues of A. Then
rs(A) > p. Take € = r,(A) — 5, and apply Lemma 3.2 to each Jordan block of
A with this € to obtain the modified Jordan form A for A. Then || A]|, = r,(A),
which is a norm of A by Lemma 3.1.

Suppose that there is an m x m (m > 2) Jordan block of A corresponding to a
dominant eigenvalue A. If 4 =0, then the assertion is obvious, since for any
A # O, ||A]| > 0 for all norms. Assume next that 1 # 0. Let ey, e,,. .., e, be the
natural basis of the coordinate space corresponding to this Jordan block. Then
A(xie; +x2€y) = (Ax; + x2)e; + Axre;. Assume that there is some norm ||.|| such
that  [|A[| = supjy0(|AX[|/[|x]]) = 7,(A). Then for all vectors x,
[|AX|| < 7, (A)|x]|. We will show that this is impossible. Let x = x;e; + x,e,, then

[|(Zx1 + x2)e1 + Axzes|| < 76 (A)]|x1€1 + X285 |
for all complex x; and x,. Letx; = m (m = 1,2,...) and x, = 4, then we see that
[[(m + 1)Je; + 2es|| < rp(A)||me; + Jes|.
Since 7,(A) = |4] > 0,
|(m+ 1)e; + Zes|| < ||me; + Jes]|.
This relation implies that for all M > 2,
[Me; + Zes|| < ||(M — 1)e; + dey|| < -+ < ||er + Zes]],
and division by M yields
e +ie
1 H7®

Letting M — oo and using the continuity of vector norms we have ||e;|| <0,
which is impossible since with any vector norm, ||e;| > 0.
Thus, the proof is completed. [

1
< 7 ler + Zey|.

From Theorems 2.6 and 3.4, we have the following interesting result.
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Corollary 3.5. Assume that all conditions of Theorem 2.6 hold. Then for a stable
equilibrium, the spectual radius of J, the Jacobian of the transition function at the
equilibrium, must not be greater than 1. Furthermore, if all the Jordan blocks of J
corresponding to the eigenvalues with largest absolute value have size 1 x 1, then
there exists some matrix norm such that ||J|| < 1.

The result of Corollary 3.5 cannot be further extended, as it is illustrated in
the following example which provides a nonlinear discrete dynamic system
with an asymptotically stable equilibrium and with all matrix norms of the
Jacobian of the transition function at the equilibrium being strictly greater than
one.

Example 3.6. Consider the dynamical system z,,, = T(z,), where z = (x,y)" €
R? and

xe ™ +ye”
T<z>=< o ) 5)

The equilibrium is the solution of equations

X = xe_xz + ye_yz, y= ye_yz .

From the second equation we see y = 0, and then the first equation implies that
x = 0. Thus, the unique equilibrium is Z = 0.
Notice that

T'(2) = % e 2y e
B 0 —%e 4o )’

therefore

serw= () 1)

Then by Theorem 3.4, any norm of J is strictly greater than 1.
Next we show that the equilibrium of the system generated by Eq. (5) is
asymptotically stable. We can write this system as

2 2 2

X1 =X€ 7+ € =X€ 7+ Vi,
_2

Yer1 =ye .

Let f(x) = xe™. Since f/(x) = e™ +xe™ (—2x) = e (1 — 2x2), f is strictly
increasing in [0, 1/v/2).

Define next g(x) =x — f(x). Then g/(x) =1 —e* (1 -2 >1—e* >0
for x € (—o0,0), that is, g increases for x € (—00, 00).
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Select any initial state (xo,)y). First we show that y, — 0 as t — oco. Since
ii| = |y,|t°f‘y"2 <|wil, sequence |y;| is convergent. If y* denotes the limit, then
the recursion implies that y* = y*e™" showing that y* = 0.

Select now an arbitrary € € (0,1/+/2), and denote § = g(¢). Then & > 0.
Since y; — 0, there is an N such that |y,| < min{e, d} = 6 as t = N.

Assume first that for some ¢ > N, |x,| < e. Then

1] < ‘xt‘e,\x,\l + | < fle) +d=1f(e) +2(e) = fe) +e—f(e) =€
(6)

Assume next that with some ¢ > N, |x,| = e. Then

beea| < Pele ™™ 4 | < £(bl) + 6 = £(bxl) + g(e)
<S(bl) + g(bxl) = Pl

Now we show that there is a #* > N such that |x| < e. Assume not, then
|x,| = e for all # > N. Since sequence |x,| is decreasing when 7 > N, it converges
to a limit x*. Letting ¢ — oo in the recursion of x;, and using the fact that y, — 0
we have )

X =xe™ 40

implying that x* = 0 which contradicts the assumption. From the previous
derivation we also see that for all > ¢*, |x,| < e.

In summary, if ¢ > ¢*, then |x,| <, |)1] <e¢, proving that both sequences
converge to zero.

The above derivation also implies that the zero equilibrium is stable. Select
any ¢ € (0,1/v/2), and define 6 = g(e) > 0. If |xo| <  and [y| < 0, then it is
easy to show that for all £ > 0, |x,| < € and [|y;| < e. The monotonicity of se-
quence |y,| implies that |y;| < § < e. Inequality |x,| < € can be proven by in-
duction using inequality (6), since for £ = 0 it holds, and the induction step is
given by relation (6).

Remark. We can easily extend this example to any dimension »n > 2 such that
the equilibrium is asymptotically stable and the Jacobian at the equilibrium is a
Jordan block with size n x n. Just consider the dynamic system x,,; = T(x,),
where x = (x1,x,. .. ,x,,)T € R" and

_2 )
X1€ 1 + x,e *2

42 2
X772 4 X375

_2 _2
Xy_1€ -1 4 x,8 %

2
X,€ Xn
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The unique equilibrium is X = 0. The Jacobian of T at this equilibrium is the
n x n Jordan block with unit eigenvalue. Similarly to the discussion given in
Example 3.6, we first show that component x, is stable and converges to zero.
Then the same is shown for x,_;, and then for x,_,, and so on, and finally for x;.

References

[1] F. Szidarovszky, A.T. Bahill, Linear Systems Theory, CRC Press, Boca Raton, 1992.

[2] W. Li, F. Szidarovszky, Y. Kuang, Notes on the stability of dynamic economic systems,
submitted.

[3] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press, Cambridge, 1997, pp. 242-259.

[4] Y. Xu, Introductory Algebra (in Chinese), Shanghai Academic Press of Science and
Technology, China, 1966, pp. 546-547.

[5] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978.

[6] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

[7]1 J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Serveral Variables,
Academic Press, New York, 1970, pp. 42-44.



